Hints for New Physics in B_s studies at the Tevatron (CDF and D \varnothing results)

Jan Morlock for the CDF and the DØ Collaboration

Institut für Experimentelle Kernphysik University of Karlsruhe

6th November 2008

- ► Search for New Physics in transitions
 - \rightarrow Measurement of the properties of oscillating particles

- Search for New Physics in transitions
 - → Measurement of the properties of oscillating particles
- $ightharpoonup B^0$ and K^0 are well explored by other experiments

- Search for New Physics in transitions
 - → Measurement of the properties of oscillating particles
- ▶ B^0 and K^0 are well explored by other experiments
- \triangleright B_s^0 sector still partially unexplored.

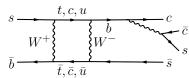
- Search for New Physics in transitions
 - → Measurement of the properties of oscillating particles
- ▶ B^0 and K^0 are well explored by other experiments
- \triangleright B_s^0 sector still partially unexplored.
- ▶ 2006: **Mixing frequency** Δm_s of the B_s^0 measured by CDF and DØ

- Search for New Physics in transitions
 - → Measurement of the properties of oscillating particles
- ▶ B^0 and K^0 are well explored by other experiments
- \triangleright B_s^0 sector still partially unexplored.
- ▶ 2006: **Mixing frequency** Δm_s of the B_s^0 measured by CDF and DØ
- ▶ Now: Measurement of the **mixing phase** β_s

- Search for New Physics in transitions
 - → Measurement of the properties of oscillating particles
- ▶ B^0 and K^0 are well explored by other experiments
- \triangleright B_s^0 sector still partially unexplored.
- ▶ 2006: **Mixing frequency** Δm_s of the B_s^0 measured by CDF and DØ
- Now: Measurement of the **mixing phase** β_s
- Accessible through interference of decays with and without mixing

$$B_s \longrightarrow J/\Psi(\rightarrow \mu^+\mu^-) \ \phi(\rightarrow K^+K^-)$$





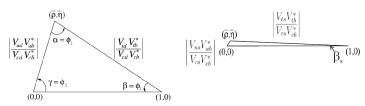
The CKM Matrix

 The Cabibbo-Kobayashi-Maskawa matrix connects mass and weak quark eigenstates

$$\left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight)$$

- To conserve probability, CKM matrix must be unitary.
- Unitary relations can be represented as unitarity triangles.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$



 \blacktriangleright Subject of this measurement $\boxed{\beta_{\rm s}^{\rm SM} = arg(-\frac{V_{\rm ts}\,V_{tb}^*}{V_{\rm cs}\,V_{cb}^*})}$

The Neutral B_s^0 -System

Time evolution of B_s flavor eigenstates described by Schrödinger equation:

$$i\frac{\partial}{\partial t} \left(\begin{array}{c} |B_s^0(t)> \\ |\bar{B}_s^0(t)> \end{array} \right) = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \left(\begin{array}{c} |B_s^0(t)> \\ |\bar{B}_s^0(t)> \end{array} \right)$$

Diagonalize mass (M) and decay matrices (Γ) \rightarrow mass eigenstates:

$$|B_s^H(t)> = \rho|B_s^0(t)> -q|\bar{B}_s^0(t)> \ |B_s^L(t)> = \rho|B_s^0(t)> +q|\bar{B}_s^0(t)> \$$

Flavor eigenstates differ from mass eigenstates and mass eigenvalues are different. B_s oscillates with frequency $\Delta m_s = m_H - m_L \approx 2|M_{12}|$

CDF	DØ
$\Delta m_s = (17.77 \pm 0.12) ps^{-1}$	$\Delta m_s = (18.56 \pm 0.87) ps^{-1}$

Mass eigenstates have different decay widths:

$$\Delta\Gamma = \Gamma_L - \Gamma_H pprox 2 |\Gamma_{12}| cos(\phi_s)$$
 with $\phi_s = arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$

Relationship of the Phases

The different phases and their SM expectation value:

$$\phi_s^{SM} = arg\bigg(-\frac{\textit{M}_{12}}{\Gamma_{12}}\bigg) \approx 4 \cdot 10^{-3} \qquad \textit{and} \qquad \beta_s^{SM} = arg\bigg(-\frac{\textit{V}_{ts} \textit{V}_{tb}^*}{\textit{V}_{cs} \textit{V}_{cb}^*}\bigg) = 0.02$$

New Physics affects both phases by same quantity 1:

$$\begin{array}{lcl} 2\beta_s^{J/\Psi\phi} & = & 2\beta_s^{SM} - \phi_s^{NP} \\ \phi_s^{J/\Psi\phi} & = & \phi_s^{SM} + \phi_s^{NP} \end{array}$$

If the new physics phase ϕ_s^{NP} dominates over the SM phases $2\beta_s^{SM}$ and ϕ_s^{SM} \rightarrow neglect SM phases and obtain:

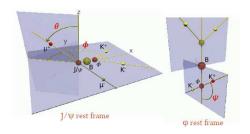
$$2\beta_s^{J/\Psi\phi} = -\phi_s^{NP} = -\phi_s^{J/\Psi\phi}$$

Decay Topology

$$\begin{array}{cccc} \mathcal{B}_s & \longrightarrow & J/\Psi \; (\to \mu^+\mu^-) & \phi \; (\to \mathcal{K}^+\mathcal{K}^-) \\ (\mathsf{spin}{=}0) & & (\mathsf{spin}{=}1) & (\mathsf{spin}{=}1) \end{array}$$

Conservation of angular momentum lead to three different final states:

$$L = 0, 2$$
 (s-wave),(d-wave) CP even $L = 1$ (p-wave) CP odd



Choice of basis:

Transversity basis^a with corresponding decay amplitudes:

 A_{\perp} CP odd

 A_0 CP even A_{\parallel} CP even

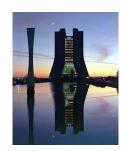
 A_{\parallel} CP even and angles

$$\vec{\rho} = (\Psi_T, \theta_T, \phi_T)$$

^ahep-ph/9511363

The Tevatron

- ► Tevatron: circular particle accelerator at the Fermilab (near Chicago, Illinois)
- ▶ Proton-Antiproton collisions
- ▶ $\sqrt{s} = 1.96 \, TeV$
- ► Two detectors: CDF and DØ



Luminosity / Experiment:

Int. Lumi.	fb^{-1}
delivered	≈ 5.0
on tape	≈ 4.2
this analysis	≈ 2.8

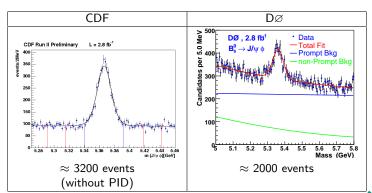
The Detectors

CDF	D∅	
 Strong tracking system Good particle identification (dE/dx and TOF) 	Large muon and tracking coverageB field direction reversable	
Central Crit Chamber M Calchinate A Michaelman Haston Calchinate Haston Calchinate See (Magn. you've) Solendasi Magnet Solendasi Magnet	Muon Scintillators Muon Chambers Shielding Calorimetey Toroid Toroid	

Signal Sample

Mixing phase β_s and decay width difference $\Delta\Gamma$ are extracted using an unbinned maximum likelihood fit in

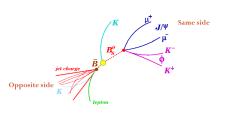
- Mass
- Tagging information
- Proper decay time and Transversity angles



Flavour Tagging

Mixing phase $\beta_{\rm s}$ and decay width difference $\Delta\Gamma$ are extracted using an unbinned maximum likelihood fit in

- Mass
- ► Tagging information
- Proper decay time and Transversity angels



Tagging used to increase the sensitivity on the parameters.

Approach:

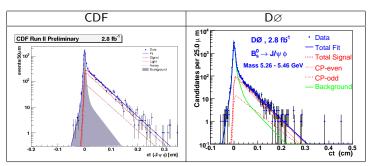
- ► **OST:** exploits decay products of other b-hadron in the event
- ► **SST**: exploits the correlations with particles produced in fragmentation

Output: Decision (b or \bar{b}) and probability of being correct

Proper Decay Time

Mixing phase β_s and decay width difference $\Delta\Gamma$ are extracted using an unbinned maximum likelihood fit in

- Mass
- Tagging information
- Proper decay time and Transversity angels



CDF: $\tau(B_s) = (1.53 \pm 0.04(stat.) \pm 0.01(syst.))ps$ D \varnothing : $\tau(B_s) = (1.52 \pm 0.05(stat.) \pm 0.01(syst.))ps$

Time and angular probability for B_s^0 :

$$\begin{array}{ll} \frac{d^4P(t,\vec{\rho})}{dtd\vec{\rho}} & \propto & |A_0|^2f_1(\vec{\rho})\mathcal{T}_+(t) + |A_{||}|^2f_2(\vec{\rho})\mathcal{T}_+(t) \\ & + & |A_\perp|^2f_3(\vec{\rho})\mathcal{T}_-(t) + |A_0||A_{||}|f_5(\vec{\rho})\cos(\delta_{||})\mathcal{T}_+(t) \\ & + & |A_{||}||A_\perp|f_4(\vec{\rho})\mathcal{U}(t) + |A_0||A_\perp|f_6(\vec{\rho})\mathcal{V}(t) \\ \\ \mathcal{T}_\pm(t) & = & e^{-\Gamma t}\left[\cosh(\Delta\Gamma t/2)\mp\cos(2\beta_s)\sinh(\Delta\Gamma t/2) \\ & \mp \eta\sin(\Delta m_s t)\sin(2\beta_s)\right] \\ \mathcal{U}(t) & = & e^{-\Gamma t}\left[\cos(\delta_\perp - \delta_{||})\sin(2\beta_s)\sinh(\Delta\Gamma t/2) \\ & + \eta\cos(\Delta m_s t)\sin(\delta_\perp - \delta_{||}) \\ & - \eta\sin(\Delta m_s t)\cos(\delta_\perp - \delta_{||})\cos(2\beta_s)\right] \\ \\ \mathcal{V}(t) & = & e^{-\Gamma t}\left[\cos(\delta_\perp)\sin(2\beta_s)\sinh(\Delta\Gamma t/2) \\ & + \eta\cos(\Delta m_s t)\sin(\delta_\perp) \\ & - \eta\sin(\Delta m_s t)\cos(\delta_\perp)\cos(2\beta_s)\right] \end{array}$$

Time and angular probability for B_s^0 :

Time and angular probability for
$$B_s^c$$
:
$$\frac{d^4P(t,\vec{\rho})}{dtd\vec{\rho}} \propto |A_0|^2f_1(\vec{\rho})\mathcal{T}_+(t) + |A_{||}|^2f_2(\vec{\rho})\mathcal{T}_+(t) \\ + |A_{\perp}|^2f_3(\vec{\rho})\mathcal{T}_-(t) + |A_0||A_{||}|f_5(\vec{\rho})\cos(\delta_{||})\mathcal{T}_+(t) \\ + |A_{||}||A_{\perp}|f_4(\vec{\rho})\mathcal{U}(t) + |A_0||A_{\perp}|f_6(\vec{\rho})\mathcal{V}(t)$$

$$\mathcal{T}_\pm(t) = e^{-\Gamma t}\left[\cosh(\Delta\Gamma t/2) \mp \cos(2\beta_s)\sinh(\Delta\Gamma t/2)\right]$$

Explanation

Angular functions

$$\mathcal{T}_{\pm}(t) = e^{-1t} \left[\cosh(\Delta\Gamma t/2) \mp \cos(2\beta_s) \sinh(\Delta\Gamma t/2) + \eta \sin(\Delta m_s t) \sin(2\beta_s) \right]$$

$$\begin{array}{lcl} \mathcal{U}(t) & = & e^{-\Gamma t} \left[\cos(\delta_{\perp} - \delta_{||}) \sin(2\beta_{s}) \sinh(\Delta \Gamma t / 2) \right. \\ & & + \eta \cos(\Delta m_{s} t) \sin(\delta_{\perp} - \delta_{||}) \\ & & - \eta \sin(\Delta m_{s} t) \cos(\delta_{\perp} - \delta_{||}) \cos(2\beta_{s}) \left. \right] \end{array}$$

$$\begin{array}{rcl} \mathcal{V}(t) & = & e^{-\Gamma t} \left[\cos(\delta_{\perp}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right. \\ & & + \eta \cos(\Delta m_s t) \sin(\delta_{\perp}) \\ & & - \eta \sin(\Delta m_s t) \cos(\delta_{\perp}) \cos(2\beta_s) \left. \right] \end{array}$$

Time and angular probability for B_s^0 :

$$\frac{d^{4}P(t,\vec{\rho})}{dtd\vec{\rho}} \propto |A_{0}|^{2}f_{1}(\vec{\rho})\mathcal{T}_{+}(t) + |A_{||}|^{2}f_{2}(\vec{\rho})\mathcal{T}_{+}(t)$$

$$+ |A_{\perp}|^{2}f_{3}(\vec{\rho})\mathcal{T}_{-}(t) + |A_{0}||A_{||}|f_{5}(\vec{\rho})\cos(\delta_{||})\mathcal{T}_{+}(t)$$

$$+ |A_{||}||A_{\perp}|f_{4}(\vec{\rho})\mathcal{U}(t) + |A_{0}||A_{\perp}|f_{6}(\vec{\rho})\mathcal{V}(t)$$

$$\mathcal{T}_{\pm}(t) = e^{-\Gamma t}\left[\cosh(\Delta\Gamma t/2) \mp \cos(2\beta_{s})\sinh(\Delta\Gamma t/2) \right.$$

$$\mp \eta \sin(\Delta m_{s}t)\sin(2\beta_{s})\right]$$

$$\mathcal{U}(t) = e^{-\Gamma t}\left[\cos(\delta_{\perp} - \delta_{||})\sin(2\beta_{s})\sinh(\Delta\Gamma t/2) \right.$$

$$+ \eta \cos(\Delta m_{s}t)\sin(\delta_{\perp} - \delta_{||}) \right.$$

$$- \eta \sin(\Delta m_{s}t)\cos(\delta_{\perp} - \delta_{||})\cos(2\beta_{s})\right]$$

$$\mathcal{V}(t) = e^{-\Gamma t}\left[\cos(\delta_{\perp})\sin(2\beta_{s})\sinh(\Delta\Gamma t/2) \right.$$

$$+ \eta \cos(\Delta m_{s}t)\sin(\delta_{\perp})$$

$$- \eta \sin(\Delta m_{s}t)\cos(\delta_{\perp})\cos(2\beta_{s})\right]$$

- Angular functions
- Polarization amplitudes

Time and angular probability for B_s^0 :

$$\frac{d^{4}P(t,\vec{\rho})}{dtd\vec{\rho}} \propto |A_{0}|^{2}f_{1}(\vec{\rho})\mathcal{T}_{+}(t) + |A_{||}|^{2}f_{2}(\vec{\rho})\mathcal{T}_{+}(t)$$

$$+ |A_{\perp}|^{2}f_{3}(\vec{\rho})\mathcal{T}_{-}(t) + |A_{0}||A_{||}|f_{5}(\vec{\rho})\cos(\delta_{||})\mathcal{T}_{+}(t)$$

$$+ |A_{||}||A_{\perp}|f_{4}(\vec{\rho})\mathcal{U}(t) + |A_{0}||A_{\perp}|f_{6}(\vec{\rho})\mathcal{V}(t)$$

$$\mathcal{T}_{\pm}(t) = e^{-\Gamma t}\left[\cosh(\Delta\Gamma t/2) \mp \cos(2\beta_{s})\sinh(\Delta\Gamma t/2) + \eta\sin(\Delta m_{s}t)\sin(2\beta_{s})\right]$$

$$\mathcal{U}(t) = e^{-\Gamma t}\left[\cos(\delta_{\perp} - \delta_{||})\sin(2\beta_{s})\sinh(\Delta\Gamma t/2) + \eta\cos(\Delta m_{s}t)\sin(\delta_{\perp} - \delta_{||}) - \eta\sin(\Delta m_{s}t)\cos(\delta_{\perp} - \delta_{||})\cos(2\beta_{s})\right]$$

$$\mathcal{V}(t) = e^{-\Gamma t}\left[\cos(\delta_{\perp})\sin(2\beta_{s})\sinh(\Delta\Gamma t/2) + \eta\cos(\Delta m_{s}t)\sin(\delta_{\perp}) - \eta\sin(\Delta m_{s}t)\cos(\delta_{\perp})\cos(2\beta_{s})\right]$$

- ► Angular functions
- Polarization amplitudes
- ► Time evolution

Time and angular probability for B_s^0 :

$$\frac{d^{4}P(t,\vec{\rho})}{dtd\vec{\rho}} \propto |A_{0}|^{2}f_{1}(\vec{\rho})\mathcal{T}_{+}(t) + |A_{||}|^{2}f_{2}(\vec{\rho})\mathcal{T}_{+}(t)$$

$$+ |A_{\perp}|^{2}f_{3}(\vec{\rho})\mathcal{T}_{-}(t) + |A_{0}||A_{||}|f_{5}(\vec{\rho})\cos(\delta_{||})\mathcal{T}_{+}(t)$$

$$+ |A_{||}||A_{\perp}|f_{4}(\vec{\rho})\mathcal{U}(t) + |A_{0}||A_{\perp}|f_{6}(\vec{\rho})\mathcal{V}(t)$$

$$\mathcal{T}_{\pm}(t) = e^{-\Gamma t}\left[\cosh(\Delta\Gamma t/2) \mp \cos(2\beta_{s})\sinh(\Delta\Gamma t/2) + \eta\sin(\Delta m_{s}t)\sin(2\beta_{s})\right]$$

$$\mathcal{U}(t) = e^{-\Gamma t}\left[\cos(\delta_{\perp} - \delta_{||})\sin(2\beta_{s})\sinh(\Delta\Gamma t/2) + \eta\cos(\Delta m_{s}t)\sin(\delta_{\perp} - \delta_{||}) - \eta\sin(\Delta m_{s}t)\cos(\delta_{\perp} - \delta_{||})\cos(2\beta_{s})\right]$$

$$\begin{array}{rcl} \mathcal{V}(t) & = & \mathrm{e}^{-\Gamma t} \left[\cos(\delta_{\perp}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right. \\ & & + \eta \cos(\Delta m_s t) \sin(\delta_{\perp}) \\ & & - \eta \sin(\Delta m_s t) \cos(\delta_{\perp}) \cos(2\beta_s) \left. \right] \end{array}$$

- Angular functions
- Polarization amplitudes
- ► Time evolution
- ► Strong phases $\delta_{\perp} = arg(A_{\perp}A_0^*)$ $\delta_{\parallel} = arg(A_{\parallel}A_0^*)$

Time and angular probability for B_s^0 :

$$\begin{split} \frac{d^4P(t,\vec{\rho})}{dtd\vec{\rho}} &\propto |A_0|^2f_1(\vec{\rho})\mathcal{T}_+(t) + |A_{||}|^2f_2(\vec{\rho})\mathcal{T}_+(t) \\ &+ |A_{\perp}|^2f_3(\vec{\rho})\mathcal{T}_-(t) + |A_0||A_{||}|f_5(\vec{\rho})\cos(\delta_{||})\mathcal{T}_+(t) \\ &+ |A_{||}||A_{\perp}|f_4(\vec{\rho})\mathcal{U}(t) + |A_0||A_{\perp}|f_6(\vec{\rho})\mathcal{V}(t) \\ \\ \mathcal{T}_{\pm}(t) &= e^{-\Gamma t}\left[\cosh(\Delta\Gamma t/2) \mp \cos(2\beta_s)\sinh(\Delta\Gamma t/2) \\ &\mp \eta\sin(\Delta m_s t)\sin(2\beta_s)\right] \\ \mathcal{U}(t) &= e^{-\Gamma t}\left[\cos(\delta_{\perp} - \delta_{||})\sin(2\beta_s)\sinh(\Delta\Gamma t/2) \\ &+ \eta\cos(\Delta m_s t)\sin(\delta_{\perp} - \delta_{||}) \\ &- \eta\sin(\Delta m_s t)\cos(\delta_{\perp} - \delta_{||})\cos(2\beta_s)\right] \end{split}$$

$$\begin{array}{rcl} \mathcal{V}(t) & = & \mathrm{e}^{-\Gamma t} \left[\cos(\delta_{\perp}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right. \\ & & + \eta \cos(\Delta m_s t) \sin(\delta_{\perp}) \\ & & - \eta \sin(\Delta m_s t) \cos(\delta_{\perp}) \cos(2\beta_s) \left. \right] \end{array}$$

- Angular functions
- Polarization amplitudes
- ► Time evolution
- ► Strong phases $\delta_{\perp} = arg(A_{\perp}A_0^*)$ $\delta_{\parallel} = arg(A_{\parallel}A_0^*)$
- Decay width difference

Time and angular probability for B_s^0 :

$$\frac{d^{4}P(t,\vec{\rho})}{dtd\vec{\rho}} \propto |A_{0}|^{2}f_{1}(\vec{\rho})\mathcal{T}_{+}(t) + |A_{||}|^{2}f_{2}(\vec{\rho})\mathcal{T}_{+}(t)$$

$$+ |A_{\perp}|^{2}f_{3}(\vec{\rho})\mathcal{T}_{-}(t) + |A_{0}||A_{||}|f_{5}(\vec{\rho})\cos(\delta_{||})\mathcal{T}_{+}(t)$$

$$+ |A_{||}||A_{\perp}|f_{4}(\vec{\rho})\mathcal{U}(t) + |A_{0}||A_{\perp}|f_{6}(\vec{\rho})\mathcal{V}(t)$$

$$\mathcal{T}_{\pm}(t) = e^{-\Gamma t}\left[\cosh(\Delta\Gamma t/2) \mp \cos(2\beta_{s})\sinh(\Delta\Gamma t/2) + \eta\sin(\Delta m_{s}t)\sin(2\beta_{s})\right]$$

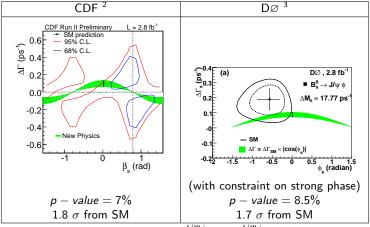
$$\mathcal{U}(t) = e^{-\Gamma t}\left[\cos(\delta_{\perp} - \delta_{||})\sin(2\beta_{s})\sinh(\Delta\Gamma t/2) + \eta\cos(\Delta m_{s}t)\sin(\delta_{\perp} - \delta_{||}) - \eta\sin(\Delta m_{s}t)\cos(\delta_{\perp} - \delta_{||})\cos(2\beta_{s})\right]$$

$$\mathcal{V}(t) = e^{-\Gamma t}\left[\cos(\delta_{\perp})\sin(2\beta_{s})\sinh(\Delta\Gamma t/2) + \eta\cos(\Delta m_{s}t)\sin(\delta_{\perp}) - \eta\sin(\Delta m_{s}t)\cos(\delta_{\perp})\cos(2\beta_{s})\right]$$

- Angular functions
- Polarization amplitudes
- ► Time evolution
- Strong phases $\delta_{\perp} = arg(A_{\perp}A_0^*)$ $\delta_{\parallel} = arg(A_{\parallel}A_0^*)$
- Decay width difference
- ► CPV Phase

Results

- ▶ Errors of β_s and $\Delta\Gamma$ are not Gaussian → study confidence region
- Both experiments show the same tendency

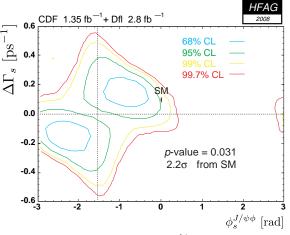


Remember:
$$2\beta_s^{J/\Psi\phi} = -\phi_s^{J/\Psi\phi}$$

³http://www-d0.fnal.gov/Run2Physics/WWW/results/final/B/B08A/

Combined Results

Combination of the up-to-date D \varnothing measurement with the previous CDF measurement 4 :



 $^{^4 {\}it http://hep.physics.indiana.edu/~rickv/hfag/combine_dGs.html}$

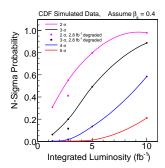
Evolution in the Past and Future Possibilities

Evolution of the deviation from the SM:

Date	Analysis	Deviation
Dec 2007	CDF (1.35/fb)	1.5σ
Mar 2008	DØ (2.8/fb)	1.7σ
Jul 2008	Combination	2.2σ
Jul 2008	CDF (2.8/fb)	$1.8~\sigma$

Fluctuations? Maybe! But the coherent pattern is interesting!

Probability to observe a non-SM β_s at CDF:



Conclusions:

Conclusions:

▶ Measurements of CPV in B_s system done by both CDF and DØ

Conclusions:

- ▶ Measurements of CPV in B_s system done by both CDF and DØ
- Study confidence region in $\Delta\Gamma$ - β_s plane

Conclusions:

- ▶ Measurements of CPV in B_s system done by both CDF and DØ
- Study confidence region in $\Delta\Gamma$ - β_s plane
- ▶ Both CDF and DØ observe 1-2 σ deviations from SM predictions

Conclusions:

- ▶ Measurements of CPV in B_s system done by both CDF and DØ
- Study confidence region in $\Delta\Gamma$ - β_s plane
- ▶ Both CDF and D \varnothing observe 1-2 σ deviations from SM predictions
- ▶ The (old) combined HFAG result has 2.2 σ deviation

Conclusions:

- ▶ Measurements of CPV in B_s system done by both CDF and DØ
- Study confidence region in $\Delta\Gamma$ - β_s plane
- ▶ Both CDF and DØ observe 1-2 σ deviations from SM predictions
- ▶ The (old) combined HFAG result has 2.2 σ deviation

Future Plans:

▶ Both Experiments: Collect more data (Plan: 6-8/fb)

Conclusions:

- ▶ Measurements of CPV in B_s system done by both CDF and DØ
- Study confidence region in $\Delta\Gamma$ - β_s plane
- ▶ Both CDF and DØ observe 1-2 σ deviations from SM predictions
- ▶ The (old) combined HFAG result has 2.2 σ deviation

- ▶ Both Experiments: Collect more data (Plan: 6-8/fb)
- ▶ DØ : Selection improvements

Conclusions:

- ▶ Measurements of CPV in B_s system done by both CDF and DØ
- Study confidence region in $\Delta\Gamma$ - β_s plane
- ▶ Both CDF and DØ observe 1-2 σ deviations from SM predictions
- ▶ The (old) combined HFAG result has 2.2 σ deviation

- ▶ Both Experiments: Collect more data (Plan: 6-8/fb)
- ▶ DØ : Selection improvements
- ► CDF: Improvements in Tagging and PID

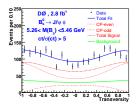
Thanks for your Attention and

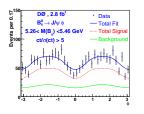
Stay tuned for Updates!

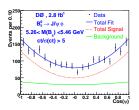
Angular Functions

$$\begin{array}{lcl} f_1(\vec{\rho}) & = & 2\cos^2\Psi_T(1-\sin^2\theta_T\cos^2\phi_T) \\ f_2(\vec{\rho}) & = & \sin^2\Psi_T(1-\sin^2\theta_T\sin^2\phi_T) \\ f_3(\vec{\rho}) & = & \sin^2\Psi_T\sin^2\theta_T \\ f_4(\vec{\rho}) & = & -\sin^2\Psi_T\sin^2\theta_T\sin\phi_T \\ f_5(\vec{\rho}) & = & 1/\sqrt{2}\sin^2\Psi_T\sin^2\theta_T\sin^2\phi_T \\ f_6(\vec{\rho}) & = & 1/\sqrt{2}\sin^2\Psi_T\sin^2\theta_T\cos\phi_T \end{array}$$

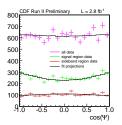
DØ: Angular Projections

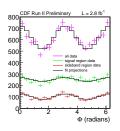


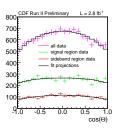




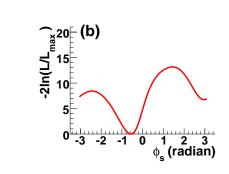
CDF: Angular Projections

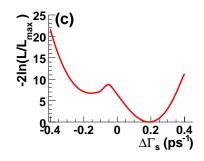




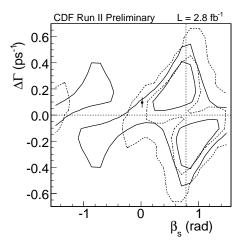


DØ: Likelihood Scan

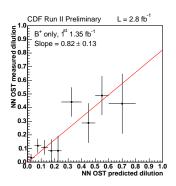


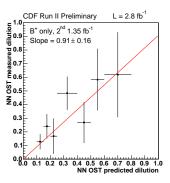


CDF: 2D likelihood profile comparison with published result

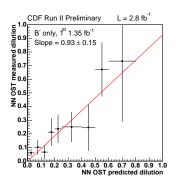


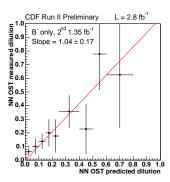
CDF: OST in B+



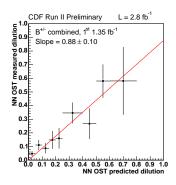


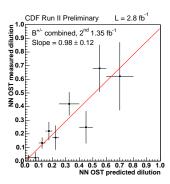
CDF: OST in B-



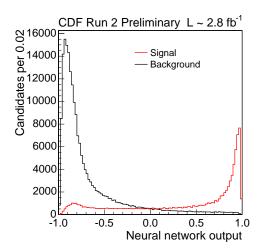


CDF: OST in B^{\pm}

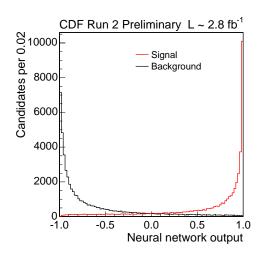




CDF: Neural Network for B^{\pm}



CDF: Neural Network for B_s



CDF: Invariant Mass of B^+

